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Abstract

Narrow antiresonances going to zero transmission are found to occur for gen-

eral (2u,0)(n,n)(2n,0) carbon nanotube heterostructures, whereas the com-

plementary configuration, (n,n)(2n,0) (n,n), displays simple resonant tunnel-

ing behaviour. We compute examples for different cases, and give a simple

explanation for the appearance of antiresonances in one case but not in the

other. Conditions and ranges for the occurence of these different behaviors

are stated. The phenomenon of anti-resonant tunneling, which has passed

unnoticed in previous studies of nanotube heterostructures, adds up to the

rich set of behaviors available to nanotube based quantum effect devices.
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Rapid progress in carbon nanotube electronic devices has been made recently [1,2]. Nan-

otube transistors [4] and diodes [5] have been experimentally verified. Doping of different

sections of the tube has been proposed for the fabrication of devices, [6]. Nevertheless, one

of the most interesting ways of producing a nanotube device consists in forming heterojunc-

tions [7-9] where different chiral tubes are joined by carbon pentagons and heptagons. This

allows to fully exploit the metallic (m) and semiconducting (s) characters of nanotubes on

a pure carbon molecule without doping. The main question is to find out the electronic

behaviour of these nanotube heterostructures. Here we address the problem of three com-

ponent heterostructures of type A-B-A, where A and B stand for different chirality of the

tube.

In solid state nanoelectronic quantum devices, an A-B-A device behaves as a single

tunneling barrier or as a quantum well, depending on the relative energies of the conduction

band edges of A and B, and one needs an A-B-A'-B-A double barrier heterostructure in

order to obtain resonant tunneling. On the contrary, we will show that nanotube ABA

junctions can display simultaneously bound states, single barrier tunneling, and double

barrier resonant tunneling. Furthermore, several kinds of resonant tunneling can occur,

more complex than the 'Fabry-Perot'-like behaviour, depending on the chirality of the A and

B sections and junction geometry. The conditions for each kind of tunneling to occur can

be established. This suggests nanotube ABA junctions as potential quantum effect devices.

A recent proposal showing the robustness of a (5,5)(6,4)(5,5) junction as quantum device

has been published [10]. However, the possibility of anti-resonant" tunneling in nanotube

heterostructures has largely been unnoticed in previous studies.

In this work, straight ABA heterostructures were constructed [11] by joining two straight

AB junctions. Here, A and B stand for different orientations of the graphene hexagons with

respect to the nanotube translation axis. The orientation is usually specified by the 2-D

chiral vector, defining the section of the nanotube perpendicular to its translation axis on a

2-D honeycomb lattice [1]. In terms of the honeycomb basis vectors, the chiral vector has the

form (n, m), where n and m are integers. Tube segments with (n, 0) or (n, n) chirality are



called zigzag and armchair tubes respectively (seefig.la). The geometriesconsideredwere

further relaxedby a moleculardynamic simulation approach,asreported previously [9]. The

calculation of their conductancecurveswere then carried out in a Linear Combination of

Atomic Orbitals framework [12]. The conductance across any interface dividing the system

can be computed as [13]

=_ t t t
a h Tr[DllpnT12D22p21T_2] • (1)

with the denominators D given by

Dn(22) = [I- T12(2x)G_2(n)T_I(12)Gn(22)] -1. (2)

G is the retarded Green function of the decoupled systems, and T is the hopping matrix

joining the two parts, p corresponds to Im[G]/Tr, and the self energies of the semi-infinite

electrodes are calculated as described in [14]. To calculate the Green function we took

advantage of the tridiagonal character of the Hamiltonian, as in ref. [15]. Resonant tunneling

at a nanotube heterostructure device has been shown to be robust and quite insensitive to

both temperature and electron-phonon scattering at the temperature and voltage biases

of interest [10]. Reference [10] justified the use of an independent electron model for the

calculation of transmission properties, which is adopted in the present approach.

Fig. 1 shows examples of two mmm straight junctions: a (6,6) (12,0) (6,6) structure (fig. lb)

and its complementary case (12,0)(6,6)(12,0) (fig.lc). The straight (6,6)(12,0) stable struc-

ture is formed by purely alternating pentagon-heptagon defects, which preserves a 6-fold

rotational symmetry. This is true for any (n,n)(2n,0) junction, keeping n-fold rotational

symmetry. As a result, we can see resonant peaks with maximum value of 2G0, and ap-

pearance of interference patterns of different character for the two straight cases (AZA and

ZAZ, where A stands for (n,n) and Z for (2n,0)). In addition to tunneling, bound states are

confined in the structures, with energies inside the range of the conducting bands. These

states are completely uncoupled from tunneling electrons, and do not affect the conductance.

They are manifested in the Green function as a change of sign of the diagonal elements of
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Re(G). In a non-purely alternating pentagon-hexagon defect structure, such as a (6,6)(10,0)

junction, rotational symmetry is greatly reduced, and thus electron scattering between dif-

ferent angular momenta takes place, destroying the degeneracy. Our calculation shows that

this leads to narrow resonant peaks with 1G0 conductance at their maximum (rather than

2G0 of fig.lb-c), in a range from about 1 to 2 eV and from -1 to -2eV for a (6,6)(10,0)(6,6)

(msm) and (10,0)(6,6)(10,0) (sms).

Simple Resonant Tunneling (SRT) and Anti Resonant Tunneling (ART) behaviours -

The remarkably regular interference pattern of the AZA structure (fig.lb) in the -2.2eV <

E < 2.2eV range suggests that the system behaves as a simple quantum interferometer (SRT

behaviour). In such a case, the propagating waves in the interferometer can be described

as a combination of a 'forward' and a 'reflected' wave at each section of the structure:

tI, = ¢1 + Cr. Denoting the two junctions as 1 and 2, it is easy to show that the wave

amplitude immediately at the right of 2 is related to the amplitude immediately before 1

by the expression [16] ¢_+6 t2e'* ¢/-6 - TV.,(__, where t and r are the transmitivity= l_r2e_2i¢

and reflectivity of one of the two junctions alone (t _ + r 2 = 1). The denominator is a

consequence of the multiple reflections between the two junctions of the interferometer (the

derivation is no longer valid if the central part, between 1 and 2, is not a single chain). This

implies that the transmission of the total system, IT] 2, is bound by two envelope curves

which are solely functions of the conductance of the single (n,n)(2n,0) junction alone, as

1 > IT] 2 t2_,, 2 > / t' __ = l_e_2,,(l_t2) _ _-:_, j . Since we have two independent degenerate channels,

the lower envelope curve for the total conductance of the AZA system, in units of 2e2/h, is

O'AZ )2
_lira = 2( 4 _ aAZ
aaz m - -- (3)

and the upper envelope is aaZA = 2. And in fact this is indeed the case, as can be seen

in fig.2(upper), where the conductance corresponding to states with angular momentum

L - =t=1 is plotted for different lengths of Z, and the minima are perfectly matched by

expression (3).

Since the envelopes of the interference pattern of a (n,n)(2n,0)(n,n) junction are fitted



by an expressioninvoving just the conductanceof the single (n,n)(2n,0) junction alone,

one would wonder whether this would also be the case for the (2n,0)(n,n)(2n,0) junction.

Fig.2(lower) shows that it is not. Despite the upper envelope is still a line at 2G0, the

pattern now shows remarkable full antiresonances -zero conductance- (ART behaviour) in

the resonant energy range, and no minima are matched by eq.(3). The difference between

the AZA and ZAZ cases can be understood as follows.

One can transform the Hamiltonian basis from local orbitals (IJ)) to combinations for

each layer (same z), on the case of the zigzag:

1

Iv)= Z:e' Jlj) (4)
3

and for the armchair:

1(i) _ eiai(ij, 1) :l: Ij, 2)) (5)
I/3+(-))-

where [j, 1(2)) are the atomic orbitals at the two inequivalent locations of j, inside one

ring and p indexes the layer. The allowed values of the angular number are 7 = rrL/n, L =

0, ..., 2n - 1;/3 = 27rL/n, L = O, ..., n - 1.

In this new basis, the zigzag tube is reduced to a series of uncoupled independent chains

with onsite energies e = 0 and alternating hoppings tl = t and t2 = 2t cos(7/2). It is

straightforward to check that this gives the proper bands of the zigzag tube. The armchair

is reduced to double chains, rather than single, with onsite energies E+ = -t, e_ = t, and

hoppings t++ = -t cos(/3/2), t+_ = -t sin03/2 ), t__ = t cos(13/2) (see fig.3).

Now, the two states [/3+) and [/3_) on the (n,n) side couple only with two states, ['y =/3/2)

and [_/' =/3/2+7r), on the (2n,0) side. From this representation, it is apparent that a zigzag

in the middle of the AZA behaves essentially as two single chains coupled to the double chain

electrodes. The conductance of these two single chains alone (i.e. for a pure (2n,0) system)

is shown as the dotted line in fig.2(upper). We see that for some energy ranges, only one

of the chains' subband is present. For such range, we have a central region consisting of a

single chain, and eq.(3) is thus valid. On the other hand, if the central region is consisting of



a double chain, as in the ZAZ case,or the energyrangeswheretwo chains areavailable for

the Z in the AZA case,derivation of eq.(3) is no longervalid sincethe transmissionof the

AZ junction is no longer a scalar. In this case,the ZAZ systembehavesas a singlechannel

injecting electrons into two different channels, that afterwards merge again to drain in a

singlechannel. When the energyis suchthat the electronarrives to the drain with opposite

phasefrom eachof the channels,an antiresonancetakesplace(ref. [17]).

Thus, the conditions for appearanceof simple interferometer resonant pattern in the

(n,n)(2n,0)(n,n) junctions can be stated: 1) it will only happen in the energyregion such

that the bands correspondingto 8+ and/3- of the A region overlap with only one of the

two subbands(_/= 8/2 or "), = f//2 - 7r) of the Z region. 2) The opening of a new subband

family with different fl leads to a superposition of two interference patterns, and destroys

the simple pattern. In general, the new superimposed pattern has different periodicity

than the other one, because each subband's minimum has different effective mass. This is

different than in the case of a classical symmetric parabolic dispersion, where different ktf

subbands have the same dispersion relation in kz, and their resonant patterns superpose

with the same periodicity in the interferometer. With nanotubes, on the contrary, the range

of simple interference pattern is only until the opening of the new subband. This allows us

to determine the interference energy ranges as a function of n. In riga we plot the lower edge

of the subbands of the in,n) system (negative slope curves) and the (2n,0) system (positive

slope) as a function of n. The simple-interference region is limited by the two thick solid

lines, fulfilling the two conditions stated above. We see that it goes from maximum to Zero

and viceversa cyclically, in periods of 6 units of n. in addition, the value of the maximum

range, i.e. that at n=6, 12, 18, etc., decreases with n. Since its size is inversely proportional

to the number of subbands in the system, it can be roughly approximated by 3t/n. The

analytic expression for the thick lines in fig.4 is given by the minimum for all q of

- n-j))},Max{sin(zrq), 1 - 2cos( _'(q 2n

q = 1, 2, ..., Int[n/2]; j = O, 1. (6)



where j = 0 yields the lower line, and j = 1 the upper one.

In conclusion, we have found occurence of antiresonances at general (2n,0)(n,n)(2n,0)

nanotube heterojunctions, and occurence of simple 'Fabry-Perot' type resonant tunneling at

(n,n)(2n,0)(n,n) nanotube heterojunctions. The SRT conductance interference pattern has

an upper constant envelope of 2G0, and a lower envelope that is fitted by _l_,_OAB A _--"2(aAB/(4--

aAB)) _ in units of the quantum of conductance. This simple pattern is due to the reduction

of the (2n,0) part to a single channel at the energies of the interference. On the other

hand, the reverse case of a (2n,0)(n,n)(2n,0) junction shows no longer a simple interference,

but displays AntiResonant Tunneling. This is because the (n,n) segment is reduced to a

double chain and allows interference between two channels. The energy range of the simple

interference pattern is within 0.5It I < IEI < [tl, and oscillates as a function of n, with a period

of 6n, being maximum at n = 6, 12, 18, ... and nearly 0 at n = 9, 15, 21, .... The size of the

maximum range becomes smaller with increasing n, roughly decreasing as 31tl/n. Unlike

parabolic dispersion band resonant interferometers, where resonator interference pattern

takes place with the same period for all kll, the interference in nanotube ABA junctions has

different period for each subband, producing subsequent steps of superimposed periodicities

when new subbands open. Possible application of resonant and anti-resonant tunneling in

nanotube based devices should take all these facts in consideration when the design of such

nanostructures becomes experimentally available.

J. H. and N. M. acknowledge Prof. J.P.Lu for his support of the joint research program

between NASA Ames and University of North Carolina at Chapel Hill.



REFERENCES

* To whom correspondence should be addressed.

[1] R.Saito, G.Dresselhaus, M.Dresselhaus, Physical Properties of Carbon Nanotubes, Im-

perial College Press, 1998; M.S. Dresselhaus, G. Dresselhaus and P. Eklund, Science of

Fullerenes and Carbon Nanotubes, Academic Press, 1996.

[2] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, J. Phys. Chem. 104, 2794 (2000)

[3] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge, 1997

[4] Tans, S.J.; Verschueren, R.M.; Dekker, C., Nature, vol.393, (no.6680):49-52 (1998).

[5] Z: Yao, H. W. Ch. Postma, L. Balents, and C. Dekker, Nature, 402, 273 (1999).

[6] Esfarjani, K.; Farajian, A.A.; Hashi, Y.; Kawazoe, Y., Applied Physics Letters, 74, 79

(1999).

[7]L. Chico, M. P. L. Sancho, and M. C. Munoz, Phys. Rev. Lett. 81, 1278 (1998); L.

Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett.

76, 971 (1996); L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B

54, 2600 (1996).

[8] Treboux, G.; Lapstun, P.; Silverbrook, K., Journal of Phys. Chem. B, 103,1871(1999).

[9] J. Han, M. P. Anantram, R. L. Jaffe, J. Kong, and H. Dai, Phys. Rev. B 57, 14983

(1998)

[10] P.Hyldgaard and B.I.Lundqvist Sol.State Commun. 116(2000)569.

[11] Bend junctions can exhibit resonant patterns around the Fermi level in some cases. The

conditions for this to occur will be published elsewhere.

[12] L.Yang, M.P.Anantram, J.Han and J.P.Lu, Phys. Rev. B 60,13874(1999).

[13] N.Mingo, L.Jurczyszyn, F.J.Garcia-Vidal, R.Saiz-Pardo, P.L.de Andres, F.Flores,

8



S.Y.Wu and W.More, Phys.Rev.B54,2225(1996).

[14] F.Guinea, C.Tejedor, F.Flores and E.Louis, Phys.Rev.B 28,4397(1983).

[15] S.Y.Wu, J.Cocks, C.S.Jayanthi,Phys.Rev.B49,7957(1994).

[16] S.Datta, Quantum Phenomena,Addison-Wesley(1989).

[17] T.B.Boykin, B.Pezeshki and J.S.Harris Jr., Phys.Rev.B

46,12769(1992); M.P.Anantram, T.R.Govindan, Phys.Rev.B61,5020(2000);E.Emberly

and G.Kirczenow, Phys.Rev.Lett.81,5205(1998).

9



FIGURES

FIG. 1. Geometry and conductance vs. energy in two examples of straight ABA type nanotube

heterostructures, a) Geometrical structure of a (6,6)(12,0)(6,6) junction; b) conductance of a

(6,6)(12,0)(6,6) m-m-m, with 8 unit cells in the (12,0) section; c) conductance of (12,0)(6,6)(12,0)

m-m-m, with 13 unit cells in the (6,6) section. See explanations in main text.

FIG. 2. Upper:. SRT of electrons with L = +1 in a (n,n)(2n,0)(n,n) heterostructure. The

case shown corresponds to n=6, and 5 unit cells in the (2n,0) part. The dotted line above the

curve corresponds to the conductance of the two channels with L = +1 of an infinitely long (2n,0)

tube. When only one of these channels is available, the resonant minima are perfectly matched

by _li,nC,ABA = 2(aAB/(4 -- CAB)) _ (thick solid line), which is a solely function of the conductance

of a single AB junction. When the two channels are available (dotted line goes to 2) the simple

interference pattern is destroyed, and antiresonances appear. Lower:. ART of electrons with L = +1

in a (2n,0)(n,n)(2n,0) heterostructure (reverse of case in fig.2a), for 5 unit cells in the (n,n) part.

The (n,n) section has two channels available at all energies, which implies that full antiresonances

occur. The curve given by eq.(3) is also plotted, to show that it does not fit any of the minima in

this case.

FIG. 3. Uncoupled double chains to which the system is reduced by transformation (4,5). The

onsite energies and hoppings are shown.

FIG. 4. Energy range in which SRT occurs, as a function of n, for (n,n)(2n,0)(n,n) type het-

erostructures, is delimited by the thick solid lines. The negative slope curves correspond to the

lower edges of the (n,n) section subbands, and the positive slope curves mark the lower edges of

the (2n,0) section subbands (not all these are plotted, to preserve the graph's clarity), in order to

obtain the biggest possible range of SRT, one should choose n being a multiple of 6, and within

these, the smallest possible n. On the other hand, systems with n = 6j + 3,j = 1, 2, ... will display

no SRT range.
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Dear Dr. Han:

The above manuscript has been reviewed by our referee(s).

On the basis of the resulting report(s), we conclude that the

paper is unsuitable for publication in Physical Review Letters.
We enclose comments from the criticism that led to this editorial

decision. In accordance with our standard practice (see

enclosed memo), this concludes our review of your manuscript.

Sincerely,

Samindranath Mitra

Assistant Editor

Physical Review Letters

Second Report of Referee A

The revised version of the manuscript is much

improved over the original. Fig. l(a) is particularly

helpful to to the reader. I also found it much easier to

focus on the authors' main points now that they have

eliminated the figures associated with the
(6,6) (10,10) (6,6) etc. heterostructures. I disagree with

what seems to be the point of Referee B's excessively

terse report, namely that there is an objection since the

calculations are based on methods previously published by

the authors. I in fact looked up some of the references

and found no evidence of repetitiveness.

In this revision there is only one small correction
which I think should be made (see below); otherwise it is

fine. Once the authors have made the

correction/clarification below, I believe the manuscript

will easily merit publication in Phys. Rev. Lett. and

recommend its acceptance.

Correction�Clarification:

This concerns eq. (4) again. In my original report I

stated that "the phase change between layers alternates 0,

gamma/2, 0, gamma/2, etc." In the revision the authors

have assigned an *alternating* phase of 0, gamma/2, etc.

which *gives the same phase change between layers.*

Perhaps I do not have a clear conception of a layer for

the zigzag, but it seems to me from fig. 1 of ref. ii that

layers are labelled as (* = atomic site):

Layer

L+I * ...... al ...... >*



SO that the z-distance between L and (L-I) is s
(s=side of hexagon), but between L and (L÷I) it is s/2.
(The atom-atom hopping matrix element has the same

magnitude in both cases since the nearest-neighbor

distance is s.) In the fugure above I indicate the

primitive translation vector al from fig. 1 of ref. ii.

(My apologies for the slightly irregular hexagons

but it's the best I can do in ASCII with tabstops at 8.)

If my perception is incorrect the authors should

clarify it in the text, otherwise eq. (4) needs a slight
correction as outlined above.

I rechecked eq. (5) for beta++ and can get the

authors' results if the atom-atom hopping is -t/2.

Finally I ask that both Authors and Editors

understand that my purpose here is not to be quibbling.

Rather I always try to put myself in the position of a

graduate student who has been assigned to read the paper

and talk about it at the next meeting; hence my attention
to details.

Referee C

The paper does not meer the criteria for publication

in PRL for the following reasons:

(I) it addresses only a specialized sub-community of
carbon nanotubes

(2) The effect reported is self-evident, namely

resonance-like Fabry-Perot oscillations die to a geometry

effect. To call this "resonant tunneling" is slightly

misleading. "Resonant" means usually tunneling through an

impurity level.

(3) Calculations are done straightforwardly using
well-established methods.

(4) Results are not at all unexpected, basically

modifications of elementary quantum mechanics excercises.
Similar results have been discussed in connection with

semiconductor nanostructures.

(5) Experimental observation is not very probable

since preparation is difficult, possibly effect will be

hidden by other effects (contacts etc.)

(6) Transport in nanotubes are expected show effects



of correlations between electrons (Luttinger liquid), this
is not discussed at all.

In summary, the reported effect is not too novel,

probably not valid and in addition does not seem to be

very important. It also lacks broad interest. I do not

recommend publication in PRL.

The paper might be publishable as a normal article
after some revision.

Referee D

I have carefully read this paper and the previous

correspondence. In my opinion, this paper does not offer

significant advances to the field that would merit

publication as a PRL. However, after minor revisions, as

the paper may be of interest to specialists working on

Landauer-Buettiker type theories for resonant tunneling, I

recommend that the paper be submitted as a Brief Report in
PRB.

Let me be more specific.

I) The calculation is quite standard, both regarding

the method and the results. The main effects are expected,

and I do not see any novel or surprising phenomenon. Given
that the methods are well developped, I believe that any

average graduate student can do this kind of research

without difficulty. In fact, very similar calculations

have been done by many researchers in the nanotube

community over the past few years (e.g. work by Rochefort

and Avouris) in slightly different context, and the

present paper does not add significant new material to

this body of work.

2) As pointed out by Referee C, the experimental

situation is much more complicated than the simple model

looked at here, and will probably never show, e.g., the

simple Fabry Perot oscillatory behavior found here.

Complications arise due to electron-electron interactions,

contact phenomena, impurities, substrate interactions etc

etc. These complications are not even mentioned in the

paper which I would consider absolutely necessary before

it can be published in any form.

3) The potential of nanotubes in "quantum effect

device" technology, which is claimed in this paper, has

been well established by many experiments and theoretical

work over the past decade.




